首页 > 数学 > 题目详情
【如图,△ABC中,∠ACB=90°,CA=CB,点D为△ABC形外一点,且点D在AC的垂直平分线上,若∠BCD=30°,求∠ABD的值.】
题目内容:
如图,△ABC中,∠ACB=90°,CA=CB,点D为△ABC形外一点,且点D在AC的垂直平分线上,若∠BCD=30°,求∠ABD的值.

优质解答
∵△ABC中,∠ACB=90°,CA=CB,
∴△ABC为等腰直角三角形,
∴∠ACB=90°,∠CAB=∠CBA=45°,
∵∠BCD=30°,
∴∠ACD=60°,
∵D在AC的垂直平分线上,
∴CD=AD,
∴△ACD为等边三角形,
∴AC=CD=AD,
∴DC=AC=BC,
∴∠CBD=∠CDB=75°,
∴∠ABD=∠CBD-∠CBA=75°-45°=30°.

优质解答
∴△ABC为等腰直角三角形,
∴∠ACB=90°,∠CAB=∠CBA=45°,
∵∠BCD=30°,
∴∠ACD=60°,
∵D在AC的垂直平分线上,
∴CD=AD,
∴△ACD为等边三角形,
∴AC=CD=AD,
∴DC=AC=BC,
∴∠CBD=∠CDB=75°,
∴∠ABD=∠CBD-∠CBA=75°-45°=30°.
本题链接: