首页 > 数学 > 题目详情
【已知a,b,c为三角形ABC的内角A,B,C的对边,向量m=(√3,cos(π-A)-1),n=(cos(π/2-A),1),m⊥n,求角A的大小】
题目内容:
已知a,b,c为三角形ABC的内角A,B,C的对边,向量m=(√3,cos(π-A)-1),n=(cos(π/2-A),1),m⊥n,求角A的大小优质解答
解由m⊥n
知mn=0
即√3cos(π/2-A)+[cos(π-A)-1]×1=0
即√3sinA-cosA-1=0
即√3sinA-cosA=1
即2(√3/2sinA-1/2cosA)=1
即2sin(A-π/6)=1
即sin(A-π/6)=1/2
即A-π/6=π/6或A-π/6=5π/6
即A=π/3或A=π(舍去)
故A=π/3
优质解答
知mn=0
即√3cos(π/2-A)+[cos(π-A)-1]×1=0
即√3sinA-cosA-1=0
即√3sinA-cosA=1
即2(√3/2sinA-1/2cosA)=1
即2sin(A-π/6)=1
即sin(A-π/6)=1/2
即A-π/6=π/6或A-π/6=5π/6
即A=π/3或A=π(舍去)
故A=π/3
本题链接: