首页 > 数学 > 题目详情
如图,有一直径是1米的圆形铁皮,要从中剪出一个圆心角是120°的扇形ABC,求:(1)被剪掉阴影部分的面积.(2)若用所
题目内容:
如图,有一直径是1米的圆形铁皮,要从中剪出一个圆心角是120°的扇形ABC,
求:(1)被剪掉阴影部分的面积.
(2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少?
优质解答
(1)设O为圆心,连接OA、OB,OC,BC,且OA与BC交于点D,如图所示:
在△ABO和△ACO中,
OB=OC AB=AC OA=OA
,
∴△ABO≌△ACO (SSS),
又∵∠BAC=120°,
∴∠BAO=∠CAO=60°,又OA=OB,
∴△ABO是等边三角形,
∴AB=OA=1 2
×1=1 2
(米),
∴S扇形ABC=120π×(1 2
)2 360
=π 12
m2,
∴S阴影=π (1 2
)2-π 12
=π 6
m2;
(2)弧BC的长l=120•π•1 2
180
=π 3
m,
设圆锥的底面半径为r,
∴π 3
=2πr,
∴r=1 6
,
∴圆锥底面圆的半径是1 6
m.
求:(1)被剪掉阴影部分的面积.
(2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少?
优质解答
在△ABO和△ACO中,
|
∴△ABO≌△ACO (SSS),
又∵∠BAC=120°,
∴∠BAO=∠CAO=60°,又OA=OB,
∴△ABO是等边三角形,
∴AB=OA=
1 |
2 |
1 |
2 |
∴S扇形ABC=
120π×(
| ||
360 |
π |
12 |
∴S阴影=π (
1 |
2 |
π |
12 |
π |
6 |
(2)弧BC的长l=
120•π•
| ||
180 |
π |
3 |
设圆锥的底面半径为r,
∴
π |
3 |
∴r=
1 |
6 |
∴圆锥底面圆的半径是
1 |
6 |
本题链接: