首页 > 数学 > 题目详情
由空间一点O引三条不共面的直线OA、OB、OC,若∠BOC=90°,∠AOB=∠AOC=60°,求直线OA与平面BOC所成的角.
题目内容:
由空间一点O引三条不共面的直线OA、OB、OC,若∠BOC=90°,∠AOB=∠AOC=60°,求直线OA与平面BOC所成的角.优质解答
取OA上一点A,作AH⊥平面BOC于H,连接OH,
则∠AOH为直线OA与平面BOC所成的角,
分别作HE⊥OB,交OB于点E,HF⊥OC,交OC于点F,
连结AE、AF,得AE⊥OB、AF⊥OC,
△OFH为等腰直角三角形,
令OF=a,则OH=2
a,OA=2a,
cos∠AOH=OH OA
=2
2
,
∴∠AOH=45°.
优质解答

则∠AOH为直线OA与平面BOC所成的角,
分别作HE⊥OB,交OB于点E,HF⊥OC,交OC于点F,
连结AE、AF,得AE⊥OB、AF⊥OC,
△OFH为等腰直角三角形,
令OF=a,则OH=
2 |
cos∠AOH=
OH |
OA |
| ||
2 |
∴∠AOH=45°.
本题链接: