【已知函数y=f(X)在[0,1]连续,在(0,1)可导,f(0)=0,f(1)=1,证存在a属于(0,1)中使f(a)=1-a】
2020-12-27 186次 反馈错误 加入收藏 正确率 : 100%
题目内容:
已知函数y=f(X)在[0,1]连续,在(0,1)可导,f(0)=0,f(1)=1,证存在a属于(0,1)中使f(a)=1-a
优质解答
闭区间上连续函数介值定理可证:
构造函数g(x)=f(x)+x,则g(x)在[0,1]连续;g(0)=0,g(1)=2;故必然存在a属于(0,1),使得g(a)=1,即f(a)=1-a.
本题链接: