首页 > 数学 > 题目详情
【已知函数F(X)=|1-1/X|,(X>0)1.是否存在实数A,B(A请问可以说清楚嘛,这是问答的大题】
题目内容:
已知函数F(X)=|1-1/X|,(X>0) 1.是否存在实数A,B(A
请问可以说清楚嘛,这是问答的大题优质解答
不存在实数a、b 满足条件.事实上,若存在实数a、b 满足条件,则有x≥a>0.
故f(x)=
(i)当a、b∈(0,1)时,f(x)= 在(0,1)上为减函数,所以 即
由此推得a=b,与已知矛盾,故此时不存在实数a、b(a<b)满足条件.
(ii)当a、b∈[1,+∞)时,f(x)= 在[1,+∞)上为增函数,所以 即 于是a、b为方程x2-x+1=0的实根.而此时方程无实根,故此时也不存在实数a、b(a<b)满足条件
(iii)当a∈(0,1),b∈[1,+∞)时,显然1∈[a,b],而f(1)=0,所以0∈[a,b],矛盾.
综上可知,不存在实数a、b(a<b)满足条件.
(2)若存在实数a、b(a<b)满足f(x)定义域是[a、b],值域是[ma、mb](m≠0),易得m>0,a>0.
仿(1)知,当a、b∈(0,1)或a∈(0,1),b∈[1,+∞)时,满足条件的实数a、b不存在.
只有当a、b∈[1,+∞)时,f(x)= 在[1,+∞)上为增函数,有
即 于是a、b为方程mx2-x+1=0的两个大于1的实根.
∴ 只须 解得0<m<1/4 ,所以m的取值范围为0<m<1/4 .
请问可以说清楚嘛,这是问答的大题
优质解答
故f(x)=
(i)当a、b∈(0,1)时,f(x)= 在(0,1)上为减函数,所以 即
由此推得a=b,与已知矛盾,故此时不存在实数a、b(a<b)满足条件.
(ii)当a、b∈[1,+∞)时,f(x)= 在[1,+∞)上为增函数,所以 即 于是a、b为方程x2-x+1=0的实根.而此时方程无实根,故此时也不存在实数a、b(a<b)满足条件
(iii)当a∈(0,1),b∈[1,+∞)时,显然1∈[a,b],而f(1)=0,所以0∈[a,b],矛盾.
综上可知,不存在实数a、b(a<b)满足条件.
(2)若存在实数a、b(a<b)满足f(x)定义域是[a、b],值域是[ma、mb](m≠0),易得m>0,a>0.
仿(1)知,当a、b∈(0,1)或a∈(0,1),b∈[1,+∞)时,满足条件的实数a、b不存在.
只有当a、b∈[1,+∞)时,f(x)= 在[1,+∞)上为增函数,有
即 于是a、b为方程mx2-x+1=0的两个大于1的实根.
∴ 只须 解得0<m<1/4 ,所以m的取值范围为0<m<1/4 .
本题链接: