首页 > 数学 > 题目详情
当x=2007,y=2008时,代数式x&sup4-y&sup4/x²-2xy-y² ÷x²+y
题目内容:
当x=2007,y=2008时,代数式x&sup4-y&sup4/x²-2xy-y² ÷x²+y²/y-x的值为
当x=2007,y=2008时,代数式 (x的四次方-y的四次方)/(x²-2xy-y²) ÷(x²+y²)/(y-x)的值为优质解答
(x^4-y^4)/(x²-2xy-y²) ÷(x²+y²)/(y-x)
=(x²-y²)(x²+y²)/(x-y)^2÷(x²+y²)/(y-x)
=(x²-y²)*(x²+y²)*(y-x)/(x-y)^2*(x²+y²)
=(x²-y²))/(y-x)
=(x-y)*(x+y)/(y-x)
= --(x+y)
= --x--y
又x=2007,y=2008,所以 (x^4-y^4)/(x²-2xy-y²) ÷(x²+y²)/(y-x)= --x--y= --4015
当x=2007,y=2008时,代数式 (x的四次方-y的四次方)/(x²-2xy-y²) ÷(x²+y²)/(y-x)的值为
优质解答
=(x²-y²)(x²+y²)/(x-y)^2÷(x²+y²)/(y-x)
=(x²-y²)*(x²+y²)*(y-x)/(x-y)^2*(x²+y²)
=(x²-y²))/(y-x)
=(x-y)*(x+y)/(y-x)
= --(x+y)
= --x--y
又x=2007,y=2008,所以 (x^4-y^4)/(x²-2xy-y²) ÷(x²+y²)/(y-x)= --x--y= --4015
本题链接: