首页 > 数学 > 题目详情
在四边形ABCD中,∠ADC=∠B=90°,DE⊥AB,垂足为E,AD=CD,且DE=BE=5,请用旋转图形的方法求四边形ABCD的面积.
题目内容:
在四边形ABCD中,∠ADC=∠B=90°,DE⊥AB,垂足为E,AD=CD,且DE=BE=5,请用旋转图形的方法求四边形ABCD的面积.
优质解答
把Rt△DEA以绕D按逆时针旋转90°,如图.∵旋转不改变图形的形状和大小,∴A与C重合,∠A=∠DCE′,∠E′=∠AED=90°.在四边形ABCD中,∵∠ADC=∠B=90°,∴∠A+∠DCB=180°;,∴∠DCE′+∠DCB=180°,即点B、C、E...
优质解答
本题链接: