如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发
2021-03-21 161次 反馈错误 加入收藏 正确率 : 100%
题目内容:
如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.
优质解答
(1)由题意可知C(0,8),又A(6,0),
所以直线AC解析式为:y=-x+8,
因为P点的横坐标与N点的横坐标相同为6-x,代入直线AC中得y=x,
所以P点坐标为(6-x,x);
(2)设△MPA的面积为S,在△MPA中,MA=6-x,MA边上的高为x,
其中,0≤x<6,
∴S=(6-x)×x=(-x2+6x)=-(x-3)2+6,
∴S的最大值为6,此时x=3;
(3)延长NP交x轴于Q,则有PQ⊥OA
①若MP=PA,
∵PQ⊥MA,
∴MQ=QA=x,
∴3x=6,
∴x=2;
②若MP=MA,则MQ=6-2x,PQ=x,PM=MA=6-x,
在Rt△PMQ中,
∵PM2=MQ2+PQ2,
∴(6-x)2=(6-2x)2+(x)2,
∴x=;
③若PA=AM,
∵PA=x,AM=6-x,
∴x=6-x,
∴x=,
综上所述,x=2,或x=,或x=.
本题链接: