首页 > 数学 > 题目详情
一道数学函数题已知抛物线y=x2+2(k+1)x-k与x轴有两个交点,且这个交点分别在直线x=1的两侧,求k的取值范围:
题目内容:
一道数学函数题
已知抛物线y=x2+2(k+1)x-k与x轴有两个交点,且这个交点分别在直线x=1的两侧,求k的取值范围:优质解答
(4(k+1)^2-4(-k))>0
f(1) - 追问:
- 答的详细点,还有情况未考虑呢。
- 追答:
- Δ>0有两个解,f(1)
- 追问:
- 好吧,对,但是我看不懂啊,写清晰点吧。
- 追答:
- 好吧,服了你了。。。。
令y=f(x)
Δ={4(k+1)^2-4(-k)}>0 k>(√5-3)/2或k => => kf(1)
已知抛物线y=x2+2(k+1)x-k与x轴有两个交点,且这个交点分别在直线x=1的两侧,求k的取值范围:
优质解答
f(1)
- 追问:
- 答的详细点,还有情况未考虑呢。
- 追答:
- Δ>0有两个解,f(1)
- 追问:
- 好吧,对,但是我看不懂啊,写清晰点吧。
- 追答:
- 好吧,服了你了。。。。
令y=f(x)
Δ={4(k+1)^2-4(-k)}>0 k>(√5-3)/2或k => => kf(1)
本题链接: