首页 > 数学 > 题目详情
已知sin(A+π/4)=7根号2/10,A属于(π/4,π/2)求cosA的值
题目内容:
已知sin(A+π/4)=7根号2/10,A属于(π/4,π/2)求cosA的值优质解答
sin(A+π/4)=7√2/10,A属于(π/4,π/2)
cos(A+π/4)=-√2/10
cosA=cos[(A+π/4)-π/4]
=cos(A+π/4)cosπ/4-sin(A+π/4)sinπ/4
=(-√2/10)*(√2/2)-(7√2/10)*(√2/2)
=-4/5 - 追问:
- 你的答案肯定不对....
- 追答:
- sin(A+π/4)=7√2/10,A属于(π/4,π/2) cos(A+π/4)=-√2/10 cosA=cos[(A+π/4)-π/4] =cos(A+π/4)cosπ/4+sin(A+π/4)sinπ/4 =(-√2/10)*(√2/2)+(7√2/10)*(√2/2) =3/5
优质解答
cos(A+π/4)=-√2/10
cosA=cos[(A+π/4)-π/4]
=cos(A+π/4)cosπ/4-sin(A+π/4)sinπ/4
=(-√2/10)*(√2/2)-(7√2/10)*(√2/2)
=-4/5
- 追问:
- 你的答案肯定不对....
- 追答:
- sin(A+π/4)=7√2/10,A属于(π/4,π/2) cos(A+π/4)=-√2/10 cosA=cos[(A+π/4)-π/4] =cos(A+π/4)cosπ/4+sin(A+π/4)sinπ/4 =(-√2/10)*(√2/2)+(7√2/10)*(√2/2) =3/5
本题链接: