首页 > 数学 > 题目详情
在三角形ABC中,a=(根号3)-1,b=(根号6)/2,角C=π/4,试判断三角形ABC的形状.0分
题目内容:
在三角形ABC中,a=(根号3)-1,b=(根号6)/2,角C=π/4,试判断三角形ABC的形状.0分优质解答
wangyinchun73 的答案是正确的!下面我把过程描述得详细些,希望你能看明白.
过A作AD⊥BC,垂足为D.
∵∠ACD=π/4,AD⊥CD,∴AC=√2CD,∴CD=AC/√2=(√6/2)/√2=√3/2.
明显有:1>√3/2,∴1+√3/2=√3/2+√3/2=√3,∴√3/2>√3-1,∴CD>√3-1.
∵BC=√3-1,而CD>√3-1,∴CD>BC,这说明点D在CB的延长线上.
由三角形外角定理,有:∠ABC=∠ADC+∠CAD=90°+∠ACD,∴∠ABC是钝角,
∴△ABC是以∠B为钝角的钝角三角形.
[另解1]
过B作BE⊥BC交直线CA于E.
∵BE⊥BC、∠BCE=π/4,∴CE=√2BC=√2(√3-1)=√6-√3,又AC=√6/2,
∴AC-CE=√6/2-(√6-√3)=√3-√6/2=(√3/2)(2-√2)>0,∴AC>CE,
∴点E在线段AC上,∴∠ABC>∠CBE=90°,∴∠ABC是钝角,
∴△ABC是以∠B为钝角的钝角三角形.
[另解2]
过B作BF⊥AC,垂足为F.
∵BF⊥CF、∠BCF=π/4,∴BF=CF=(√2/2)BC=(√2/2)(√3-1)=√6/2-√2/2,
∴AC-CF=√6/2-(√6/2-√2/2)=√2/2>0,∴AC>CF,∴点F在线段AC上.
∵AF⊥BF,
∴tan∠ABF=AF/BF=(AC-CF)/BF=(√2/2)/(√6/2-√2/2)=1/(√3-1)>1.
∵AF⊥BF,∴∠ABF是锐角,而当x为锐角时,y=tanx是增函数,又tan(π/4)=1,
∴∠ABF>π/4,∴∠ABC=∠ABF+∠CBF>π/4+∠CBF.
由BF⊥CF、∠BCF=π/4,得:∠CBF=π/4,∴∠ABF>π/4+∠CBF=π/2,∴∠ABF是钝角.
∴△ABC是以∠B为钝角的钝角三角形.
[另解3]
由余弦定理,计算出AB,再由余弦定理计算出cos∠ABC<0.[该法计算量大,此处略]
优质解答
过A作AD⊥BC,垂足为D.
∵∠ACD=π/4,AD⊥CD,∴AC=√2CD,∴CD=AC/√2=(√6/2)/√2=√3/2.
明显有:1>√3/2,∴1+√3/2=√3/2+√3/2=√3,∴√3/2>√3-1,∴CD>√3-1.
∵BC=√3-1,而CD>√3-1,∴CD>BC,这说明点D在CB的延长线上.
由三角形外角定理,有:∠ABC=∠ADC+∠CAD=90°+∠ACD,∴∠ABC是钝角,
∴△ABC是以∠B为钝角的钝角三角形.
[另解1]
过B作BE⊥BC交直线CA于E.
∵BE⊥BC、∠BCE=π/4,∴CE=√2BC=√2(√3-1)=√6-√3,又AC=√6/2,
∴AC-CE=√6/2-(√6-√3)=√3-√6/2=(√3/2)(2-√2)>0,∴AC>CE,
∴点E在线段AC上,∴∠ABC>∠CBE=90°,∴∠ABC是钝角,
∴△ABC是以∠B为钝角的钝角三角形.
[另解2]
过B作BF⊥AC,垂足为F.
∵BF⊥CF、∠BCF=π/4,∴BF=CF=(√2/2)BC=(√2/2)(√3-1)=√6/2-√2/2,
∴AC-CF=√6/2-(√6/2-√2/2)=√2/2>0,∴AC>CF,∴点F在线段AC上.
∵AF⊥BF,
∴tan∠ABF=AF/BF=(AC-CF)/BF=(√2/2)/(√6/2-√2/2)=1/(√3-1)>1.
∵AF⊥BF,∴∠ABF是锐角,而当x为锐角时,y=tanx是增函数,又tan(π/4)=1,
∴∠ABF>π/4,∴∠ABC=∠ABF+∠CBF>π/4+∠CBF.
由BF⊥CF、∠BCF=π/4,得:∠CBF=π/4,∴∠ABF>π/4+∠CBF=π/2,∴∠ABF是钝角.
∴△ABC是以∠B为钝角的钝角三角形.
[另解3]
由余弦定理,计算出AB,再由余弦定理计算出cos∠ABC<0.[该法计算量大,此处略]
本题链接: