首页 > 数学 > 题目详情
如图,在三角形ABC中,点O是AC边上一动点,过O点作BC的平行线交∠BCA的角平分线于点E,交∠BCA外角平分线于点F
题目内容:
如图,在三角形ABC中,点O是AC边上一动点,过O点作BC的平行线交∠BCA的角平分线于点E,交∠BCA外角平分线于点F.
(1)求证:EO=FO
(2) 当点O运动到何处时,四边形AECF是矩形?请证明你的结论.优质解答
1 证明:∵MN//BC
∴∠OEC=∠BCE
∴∠OFC=∠FCG
∵∠BCE=∠OCE(OE是∠BCA的内角平分线)
∴∠OEC=∠OCE
∴OE=OC
∵∠OCF=∠FCG(OF是∠BCA的外角平分线)
∴∠OCF=∠OFC
∴OF=OC
∴OE=OF
2 O运动到AC边中点时,四边形AECF是矩形.
证明:∵ OE=OC
OE=OF
当O为AC中点时 OA=OC
∴OE=OC=OF=OA
∴四边形AECF是矩形
(1)求证:EO=FO
(2) 当点O运动到何处时,四边形AECF是矩形?请证明你的结论.
优质解答
∴∠OEC=∠BCE
∴∠OFC=∠FCG
∵∠BCE=∠OCE(OE是∠BCA的内角平分线)
∴∠OEC=∠OCE
∴OE=OC
∵∠OCF=∠FCG(OF是∠BCA的外角平分线)
∴∠OCF=∠OFC
∴OF=OC
∴OE=OF
2 O运动到AC边中点时,四边形AECF是矩形.
证明:∵ OE=OC
OE=OF
当O为AC中点时 OA=OC
∴OE=OC=OF=OA
∴四边形AECF是矩形
本题链接: