首页 > 数学 > 题目详情
在三角形ABC中三边a,b,c和它的面积S间满足条件S=a^2-(b-c)^2,且b+c=8求S的面积最大值
题目内容:
在三角形ABC中三边a,b,c和它的面积S间满足条件S=a^2-(b-c)^2,且b+c=8求S的面积最大值优质解答
S=(1/2)bcsinA
a^2=b^2+c^2-2bccosA
所以 (1/2)bcsinA=b^2+c^2-2bccosA-b^2-c^2+2bc
(1/2)sinA=2-2cosA
cosA=1(舍去) 或者 cosA=15/17
所以 sinA=8/17
S=(1/2)bcsinA
=(4/17)b(8-b)
=(-4/17)(b^2-8b+16-16)
=(-4/17)(b-4)^2+64/17
当b=c=4时,S有最大值64/17
优质解答
a^2=b^2+c^2-2bccosA
所以 (1/2)bcsinA=b^2+c^2-2bccosA-b^2-c^2+2bc
(1/2)sinA=2-2cosA
cosA=1(舍去) 或者 cosA=15/17
所以 sinA=8/17
S=(1/2)bcsinA
=(4/17)b(8-b)
=(-4/17)(b^2-8b+16-16)
=(-4/17)(b-4)^2+64/17
当b=c=4时,S有最大值64/17
本题链接: