首页 > 数学 > 题目详情
【设F1、F2是双曲线x24−y2=1的两个焦点,点P在双曲线上,且∠F1PF2=90°,则△F1PF2的面积为()A.5B.2C.52D.1】
题目内容:
设 F1、F2是双曲线x2 4
−y2=1的两个焦点,点P在双曲线上,且∠F1PF2=90°,则△F1PF2的面积为( )
A. 5
B. 2
C. 5
2
D. 1优质解答
∵双曲线x24−y2=1中,a=2,b=1∴c=a2+b2=5,可得F1(-5,0)、F2(5,0)∵点P在双曲线上,且∠F1PF2=90°,∴|PF1|2+|PF2|2=|F1F2|2=20根据双曲线的定义,得||PF1|-|PF2||=2a=4∴两式联解,得|PF1|•|PF2|=2因此...
x2 |
4 |
A.
5 |
B. 2
C.
| ||
2 |
D. 1
优质解答
本题链接: