首页 > 数学 > 题目详情
设函数f(x)=1/3x^3-a/2x^2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为设
题目内容:
设函数f(x)=1/3x^3-a/2x^2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为
设函数f(x)=1/3x^3-a/2x^2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1
(1)确定b,c的值
(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2)证明:当x1不等于x2时,f’(x1)不等于f’(x2)
(3)若过点(0,2)可做曲线y=f(x)的三条不同的切线,求a的取值范围
只做第一问不采纳,我没分了,优质解答
设函数f(x)=1/3x^3-a/2x^2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1
(1)确定b,c的值
(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2)证明:当x1不等于x2时,f’(x1)不等于f’(x2)
(3)若过点(0,2)可做曲线y=f(x)的三条不同的切线,求a的取值范围
只做第一问不采纳,我没分了,
优质解答
本题链接: