三角形的三边长分别为a2+b2、2ab、a2-b2(a、b都是正整数),则这个三角形是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定
2020-11-18 99次 反馈错误 加入收藏 正确率 : 100%
题目内容:
三角形的三边长分别为a2+b2、2ab、a2-b2(a、b都是正整数),则这个三角形是( )
A. 直角三角形
B. 钝角三角形
C. 锐角三角形
D. 不能确定
优质解答
根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形,
∵(a2-b2)2+(2ab)2=(a2+b2)2,
∴三角形为直角三角形.
故选A.
本题链接: