首页 > 数学 > 题目详情
在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于D,点F在AC上,点E在BC的延长线上
题目内容:
在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于D,点F在AC上,点E在BC的延长线上,且CE=CF,连结BF、DE,试问BF、DE的大小关系和位置关系如何?并证明你的结论.优质解答
BF=DE,且BF⊥DE.理由如下:
连接DB.
∵DH是AB的垂直平分线,∠A=22.5°,
∴BD=AD,
∴∠A=∠DBH=22.5°,
∴∠CDB=∠A+∠DBH=45°.
∵∠ACB=90°,
∴∠CBD=45°,
∴CD=CB.
在△ECD和△FCB中
∵EC=FC ∠ECD=∠FCB CD=CB
,
∴△ECD≌△FCB(SAS),
∴ED=FB,∠DEC=∠BFC,
∴∠DEC+∠FBC=90°,即ED⊥FB.
优质解答
连接DB.
∵DH是AB的垂直平分线,∠A=22.5°,
∴BD=AD,
∴∠A=∠DBH=22.5°,
∴∠CDB=∠A+∠DBH=45°.
∵∠ACB=90°,
∴∠CBD=45°,
∴CD=CB.
在△ECD和△FCB中
∵
|
∴△ECD≌△FCB(SAS),
∴ED=FB,∠DEC=∠BFC,
∴∠DEC+∠FBC=90°,即ED⊥FB.
本题链接: