首页 > 数学 > 题目详情
y=cosx-sinx,求y的最大值和最小值,
题目内容:
y=cosx-sinx,求y的最大值和最小值,优质解答
方法一:
y=cosx+sinx
=(根2)*[(根2)/2*cosx+(根2)/2*sinx]
=(根2)*[sin(π/4)cosx+cos(π/4)sinx]
=(根2)*sin(x+π/4)
∵-1≤sin(x+π/4)≤1
∴-根2≤y≤根2
即函数y的极大值为“根2”,极小值为“-根2”
方法二:
cosx+sinx=y ……(1)
(cosx)^2+(sinx)^2=1 ……(2)
由(1)^2-(2)得
2sinxcosx=y^2-1
→sin2x=y^2-1
∵-1≤sin2x≤1
∴-1≤y^2-1≤1
解得,-根2≤y≤根2
即函数y的极大值为“根2”,极小值为“-根2”. - 追答:
- 对不起! y=cosx-sinx =-(sinx-cosx) =-√2(sinx•√2/2-cosx•√2/2) =-√2sin(x-π/4) ∵-1≤sin(x-π/4)≤1 ∴-√2≤-√2sin(x-π/4)≤√2 ∴ymax=√2,ymin=-√2
优质解答
y=cosx+sinx
=(根2)*[(根2)/2*cosx+(根2)/2*sinx]
=(根2)*[sin(π/4)cosx+cos(π/4)sinx]
=(根2)*sin(x+π/4)
∵-1≤sin(x+π/4)≤1
∴-根2≤y≤根2
即函数y的极大值为“根2”,极小值为“-根2”
方法二:
cosx+sinx=y ……(1)
(cosx)^2+(sinx)^2=1 ……(2)
由(1)^2-(2)得
2sinxcosx=y^2-1
→sin2x=y^2-1
∵-1≤sin2x≤1
∴-1≤y^2-1≤1
解得,-根2≤y≤根2
即函数y的极大值为“根2”,极小值为“-根2”.
- 追答:
- 对不起! y=cosx-sinx =-(sinx-cosx) =-√2(sinx•√2/2-cosx•√2/2) =-√2sin(x-π/4) ∵-1≤sin(x-π/4)≤1 ∴-√2≤-√2sin(x-π/4)≤√2 ∴ymax=√2,ymin=-√2
本题链接: