首页 > 数学 > 题目详情
已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1∨p2,q
题目内容:
已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1∨p2,q2:p1∧p2;q3:(¬p1)∨p2;q4:p1∨(¬p2);其中为真命题的是( )
A. q1和q3
B. q2和q3
C. q1 和q4
D. q2和q4优质解答
∵y=2x-2-x在
∴y‘=2x+2-x>0恒成立
∴y=2x-2-x在R上为增函数,即题p1为真命题
∵y=2x+2-x在
∴y’=2x-2-x
由y’=2x-2-x>0可得x>0,即y=2x+2-x在(0,+∞)上单调递增,在(-∞,0)上单调 递减
∴p2:函数y=2x+2-x在R上为减函数为假命题
根据复合命题的真假关系可知,q1:p1∨p2为真命题
q2:p1∧p2为假命题
q3:(¬p1)∨p2为假命题
q4:p1∨(¬p2)为真命题
故选C
A. q1和q3
B. q2和q3
C. q1 和q4
D. q2和q4
优质解答
∴y‘=2x+2-x>0恒成立
∴y=2x-2-x在R上为增函数,即题p1为真命题
∵y=2x+2-x在
∴y’=2x-2-x
由y’=2x-2-x>0可得x>0,即y=2x+2-x在(0,+∞)上单调递增,在(-∞,0)上单调 递减
∴p2:函数y=2x+2-x在R上为减函数为假命题
根据复合命题的真假关系可知,q1:p1∨p2为真命题
q2:p1∧p2为假命题
q3:(¬p1)∨p2为假命题
q4:p1∨(¬p2)为真命题
故选C
本题链接: