首页 > 数学 > 题目详情
会几道回答几道!一:试说明:当n是整数时,两个连续奇数的平方差(2n+1)²-(2n-1)²是8的倍
题目内容:
会几道回答几道!
一:试说明:当n是整数时,两个连续奇数的平方差(2n+1)²-(2n-1)²是8的倍数.
二:若m是无理数,且m,n满足mn+m+n+1=0,试问:n是有理数还是无理数?请说明你的理由.
三:某商场新进两种规格的地板砖,大小两种地板砖面积相差319cm²,已知地板砖的变长均是正整数且不大于50cm,求这两种规格的地板砖的边长分别是多少厘米?(注:地板砖均是正方形)优质解答
由(2n+1)²-(2n-1)²
=4n²+4n+1-4n²+4n-1
=8n.是8的倍数.
2.由mn+m+n+1=0,
∴(m+1)(n+1)=0,
由m是无理数,∴m+1≠0,
只有n+1=0,∴n=-1是有理数.
3.设大的边长为m,小的边长为n,
有m²-n²=319,
(m+n)(m-n)=319,
由319=11×29,(11,29都比50小)
∴m+n=29,
m-n=11,
∴m=20,n=9.
一:试说明:当n是整数时,两个连续奇数的平方差(2n+1)²-(2n-1)²是8的倍数.
二:若m是无理数,且m,n满足mn+m+n+1=0,试问:n是有理数还是无理数?请说明你的理由.
三:某商场新进两种规格的地板砖,大小两种地板砖面积相差319cm²,已知地板砖的变长均是正整数且不大于50cm,求这两种规格的地板砖的边长分别是多少厘米?(注:地板砖均是正方形)
优质解答
=4n²+4n+1-4n²+4n-1
=8n.是8的倍数.
2.由mn+m+n+1=0,
∴(m+1)(n+1)=0,
由m是无理数,∴m+1≠0,
只有n+1=0,∴n=-1是有理数.
3.设大的边长为m,小的边长为n,
有m²-n²=319,
(m+n)(m-n)=319,
由319=11×29,(11,29都比50小)
∴m+n=29,
m-n=11,
∴m=20,n=9.
本题链接: