首页 > 数学 > 题目详情
把1.2.3.······.10这十个数按任意顺序排成一圈,在这一圈数中一定有相邻的三个数之和不小于17.为什莫?
题目内容:
把1.2.3.······.10这十个数按任意顺序排成一圈,在这一圈数中一定有相邻的三个数之和不小于17.为什莫?优质解答
适合采用归谬法解答.先假设不存在任何相邻的三个数之和大于或者等于17.
由于都是自然数,所以任意三个数之和也是自然数,而由于假设,此和值最大为16,.
按照任意顺序排列成一圈,则相邻三数加和共10次,假设每次加和均达到最大值,则总和为160.
另一方面,10次加和的同时,每个数字使用了3次,他们的总和为
3×(1+2+3+4+5+6+7+8+9+10)=165
故,假设不成不成立,在这一圈数中,一定有相邻的三个数之和不小于17的!
优质解答
由于都是自然数,所以任意三个数之和也是自然数,而由于假设,此和值最大为16,.
按照任意顺序排列成一圈,则相邻三数加和共10次,假设每次加和均达到最大值,则总和为160.
另一方面,10次加和的同时,每个数字使用了3次,他们的总和为
3×(1+2+3+4+5+6+7+8+9+10)=165
故,假设不成不成立,在这一圈数中,一定有相邻的三个数之和不小于17的!
本题链接: