首页 > 数学 > 题目详情
【在三角形ABC中,AC=BC,】
题目内容:
在三角形ABC中,AC=BC,优质解答
CF=FH
证明:延长DF交AB于M
因为∠FDC=∠DCB=90°
所以DM平行于CB
又因为D为AC中点
所以DM为△ABC中位线,AD=CD=1/2AC
所以DM=1/2BC
因为AB=AC
所以DM=CD
因为DE=DF
所以CE=FM
因为DM平行于BC
所以∠AMD=∠ABC=45°
所以∠FMH=135°
因为∠DEF=45°
所以∠CEF=135°
所以∠FMH=∠CEF
所以∠FMH=∠FEC
因为∠DFE+∠EFC+∠CFH+∠HFM=180°且∠DFE=45°,∠CFH=90°
所以∠EFC+∠HFM=45°
因为∠ECF+∠EFC=∠DEF=45°
所以∠EFC+∠HFM=∠ECF+∠EFC
所以∠FMH=∠ECF
在△FEC和△HMF中
∠FMH=∠ECF
CE=FM
∠FMH=∠CEF
所以△FEC全等于△HMF
所以CF=FH
优质解答
证明:延长DF交AB于M
因为∠FDC=∠DCB=90°
所以DM平行于CB
又因为D为AC中点
所以DM为△ABC中位线,AD=CD=1/2AC
所以DM=1/2BC
因为AB=AC
所以DM=CD
因为DE=DF
所以CE=FM
因为DM平行于BC
所以∠AMD=∠ABC=45°
所以∠FMH=135°
因为∠DEF=45°
所以∠CEF=135°
所以∠FMH=∠CEF
所以∠FMH=∠FEC
因为∠DFE+∠EFC+∠CFH+∠HFM=180°且∠DFE=45°,∠CFH=90°
所以∠EFC+∠HFM=45°
因为∠ECF+∠EFC=∠DEF=45°
所以∠EFC+∠HFM=∠ECF+∠EFC
所以∠FMH=∠ECF
在△FEC和△HMF中
∠FMH=∠ECF
CE=FM
∠FMH=∠CEF
所以△FEC全等于△HMF
所以CF=FH
本题链接: