首页 > 数学 > 题目详情
求a的n次方±b的n次方的因式分解过程
题目内容:
求a的n次方±b的n次方的因式分解过程优质解答
n为奇数:
a^n+b^n=a^n-a^(n-1)b+a^(n-2)b^2-...-a^2b^(n-2)+ab^(n-1)
+a^(n-1)b-a^(n-2)b^2+...-ab^(n-1)+b^n
=a(a^(n-1)-a^(n-2)b+...-ab^(n-2)+b^(n-1))
+b(a^(n-1)-a^(n-2)b+...-ab^(n-2)+b^(n-1))
=(a+b)(a^(n-1)-a^(n-2)b+...-ab^(n-2)+b^(n-1))
n为正整数:
a^n-b^n=a^n+a^(n-1)b+a^(n-2)b^2+...+a^2b(n-2)+ab^(n-1)
-a^(n-1)b-a^(n-2)b-...-ab^(n-1)-b^n
=a(a^(n-1)+a^(n-2)b+...ab^(n-2)+b^(n-1))
-b(a^(n-1)+a^(n-2)b+...ab^(n-2)+b^(n-1))
=(a-b)(a^(n-1)+a^(n-2)b+...ab^(n-2)+b^(n-1)) - 追答:
用个简单的实例来看下吧。主要是中间增项和减项。
你只要记住因式分解的结果,再乘进去就可以看到过程了。
优质解答
a^n+b^n=a^n-a^(n-1)b+a^(n-2)b^2-...-a^2b^(n-2)+ab^(n-1)
+a^(n-1)b-a^(n-2)b^2+...-ab^(n-1)+b^n
=a(a^(n-1)-a^(n-2)b+...-ab^(n-2)+b^(n-1))
+b(a^(n-1)-a^(n-2)b+...-ab^(n-2)+b^(n-1))
=(a+b)(a^(n-1)-a^(n-2)b+...-ab^(n-2)+b^(n-1))
n为正整数:
a^n-b^n=a^n+a^(n-1)b+a^(n-2)b^2+...+a^2b(n-2)+ab^(n-1)
-a^(n-1)b-a^(n-2)b-...-ab^(n-1)-b^n
=a(a^(n-1)+a^(n-2)b+...ab^(n-2)+b^(n-1))
-b(a^(n-1)+a^(n-2)b+...ab^(n-2)+b^(n-1))
=(a-b)(a^(n-1)+a^(n-2)b+...ab^(n-2)+b^(n-1))
- 追答:
用个简单的实例来看下吧。主要是中间增项和减项。
你只要记住因式分解的结果,再乘进去就可以看到过程了。
本题链接: