首页 > 数学 > 题目详情
f(x)为非0函数高数f(x+y)=f(x)f(y)当x=0时的导数为1证明f(x)的导数等于f(x)
题目内容:
f(x)为非0函数高数f(x+y)=f(x)f(y) 当x=0时的导数为1证明f(x)的导数等于f(x)优质解答
f(x+y)=f(x)f(y)
put x=y=0
f(0)=f(0)f(0)
f(0) =1
f'(x) = lim(y->0){ [f(x+y)-f(x)]/y}
= lim(y->0) [f(x)f(y)-f(x)]/y
= f(x) lim(y->0)(f(y)-1)/y
= f(x) lim(y->0)( f(0+y)-f(0))/y
= f(x) f'(0)
= f(x) #
优质解答
put x=y=0
f(0)=f(0)f(0)
f(0) =1
f'(x) = lim(y->0){ [f(x+y)-f(x)]/y}
= lim(y->0) [f(x)f(y)-f(x)]/y
= f(x) lim(y->0)(f(y)-1)/y
= f(x) lim(y->0)( f(0+y)-f(0))/y
= f(x) f'(0)
= f(x) #
本题链接: