首页 > 数学 > 题目详情
如图,长方体ABCD-A1B1C1D1 中,底面A1B1C1D1 是正方形,O是BD的中点,E是棱AA1上任意一点. (
题目内容:
如图,长方体ABCD-A1B1C1D1 中,底面A1B1C1D1 是正方形,O是BD的中点,E是棱AA1上任意一点.
(Ⅰ)证明:BD⊥EC1;
(Ⅱ)如果AB=2,AE=2
,OE⊥EC1,求AA1的长.优质解答
(Ⅰ)连接AC,AE∥CC1,⇒E,A,C,C1共面,
长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形.
AC⊥BD,EA⊥BD,AC∩EA=A,⇒BD⊥平面EACC1,⇒BD⊥EC1;
(Ⅱ)在矩形ACC1A1中,OE⊥EC1,⇒△OAE∽△EA1C1,
AB=2,AE=2
得AE AO
=A1C1 EA1
⇔2
2
=AA1−2
22
,AA1=32
.
(Ⅰ)证明:BD⊥EC1;
(Ⅱ)如果AB=2,AE=
2 |
优质解答
长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形.
AC⊥BD,EA⊥BD,AC∩EA=A,⇒BD⊥平面EACC1,⇒BD⊥EC1;
(Ⅱ)在矩形ACC1A1中,OE⊥EC1,⇒△OAE∽△EA1C1,
AB=2,AE=
2 |
AE |
AO |
A1C1 |
EA1 |
| ||
|
AA1−
| ||
2
|
2 |
本题链接: