首页 > 数学 > 题目详情
已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是______.
题目内容:
已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是______.优质解答
由x2+xy+y2-2=0得:x2+2xy+y2-2-xy=0,
即(x+y)2=2+xy≥0,所以xy≥-2;
由x2+xy+y2-2=0得:x2-2xy+y2-2+3xy=0,
即(x-y)2=2-3xy≥0,所以xy≤2 3
,
∴-2≤xy≤2 3
,
∴不等式两边同时乘以-2得:
(-2)×(-2)≥-2xy≥2 3
×(-2),即-4 3
≤-2xy≤4,
两边同时加上2得:-4 3
+2≤2-2xy≤4+2,即2 3
≤2-2xy≤6,
∵x2+xy+y2-2=0,∴x2+y2=2-xy,
∴M=x2-xy+y2=2-2xy,
则M的取值范围是2 3
≤M≤6.
故答案为:2 3
≤M≤6
优质解答
即(x+y)2=2+xy≥0,所以xy≥-2;
由x2+xy+y2-2=0得:x2-2xy+y2-2+3xy=0,
即(x-y)2=2-3xy≥0,所以xy≤
2 |
3 |
∴-2≤xy≤
2 |
3 |
∴不等式两边同时乘以-2得:
(-2)×(-2)≥-2xy≥
2 |
3 |
4 |
3 |
两边同时加上2得:-
4 |
3 |
2 |
3 |
∵x2+xy+y2-2=0,∴x2+y2=2-xy,
∴M=x2-xy+y2=2-2xy,
则M的取值范围是
2 |
3 |
故答案为:
2 |
3 |
本题链接: