首页 > 数学 > 题目详情
在平面直角坐标系XOY中,抛物线y=x^2上异于原点O的两动点A,B满足AO垂直于BO.(1)求三角形AOB的重心G的轨
题目内容:
在平面直角坐标系XOY中,抛物线y=x^2上异于原点O的两动点A,B满足AO垂直于BO.
(1)求三角形AOB的重心G的轨迹方程!
(2)三角形AOB的面积是否存在最小值?若存在求出最小值,若不存在,说明理由.优质解答
在平面直角坐标系XOY中,抛物线y=x^2上异于原点O的两动点A,B满足AO⊥BO
设三角形AOB的重心G(x,y),A(a,a^2),B(b,b^2),AB的中点P,则
k(OA)=a^2/a=a,k(OB)=b
k(OA)*k(OB)=-1
a*b=-1,b=-1/a,b^2=1/a^2,b^4=1/a^4
由重心知识可知
xP=1.5xG=1.5x,yP=1.5y
P为AB的中点
xA+xB=2xP=3x, yA+yB=2yP=3y
a+b=3x,a^2+b^2=3y
(a+b)^2=(3x)^2
a^2+b^2+2ab=9x^2
3y+2*(-1)=9x^2
(1)三角形AOB的重心G的轨迹方程
y=3x^2+(2/3)
(2)△AOB的面积S
∵a^2+(1/a^2)≥2,AO⊥BO,△AOB为RT△
∴S=OA*OB/2
=0.5[√(a^2+a^4)]*[√(b^2+b^4)]
=0.5[√(a^2+a^4)]*{√[(1/a^2)+(1/a^4)]}
=0.5√[2+a^2+(1/a^2)]
S≥0.5*√(2+2)
S≥1
∴三角形AOB的面积的最小值=1
答:
(1)三角形AOB的重心G的轨迹方程:y=3x^2+(2/3)
(2)三角形AOB面积最小值的=1
(1)求三角形AOB的重心G的轨迹方程!
(2)三角形AOB的面积是否存在最小值?若存在求出最小值,若不存在,说明理由.
优质解答
设三角形AOB的重心G(x,y),A(a,a^2),B(b,b^2),AB的中点P,则
k(OA)=a^2/a=a,k(OB)=b
k(OA)*k(OB)=-1
a*b=-1,b=-1/a,b^2=1/a^2,b^4=1/a^4
由重心知识可知
xP=1.5xG=1.5x,yP=1.5y
P为AB的中点
xA+xB=2xP=3x, yA+yB=2yP=3y
a+b=3x,a^2+b^2=3y
(a+b)^2=(3x)^2
a^2+b^2+2ab=9x^2
3y+2*(-1)=9x^2
(1)三角形AOB的重心G的轨迹方程
y=3x^2+(2/3)
(2)△AOB的面积S
∵a^2+(1/a^2)≥2,AO⊥BO,△AOB为RT△
∴S=OA*OB/2
=0.5[√(a^2+a^4)]*[√(b^2+b^4)]
=0.5[√(a^2+a^4)]*{√[(1/a^2)+(1/a^4)]}
=0.5√[2+a^2+(1/a^2)]
S≥0.5*√(2+2)
S≥1
∴三角形AOB的面积的最小值=1
答:
(1)三角形AOB的重心G的轨迹方程:y=3x^2+(2/3)
(2)三角形AOB面积最小值的=1
本题链接: