首页 > 数学 > 题目详情
数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n.(1)设cn
题目内容:
数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n.
(1)设cn=an-1,求证:数列{cn}是等比数列;
(2)求数列{bn}的通项公式.优质解答
(1)证明:∵a1=S1,an+Sn=n,∴a1+S1=1,得a1=1 2
.
又an+1+Sn+1=n+1,两式相减得2(an+1-1)=an-1,即an+1−1 an−1
=1 2
,
也即cn+1 cn
=1 2
,故数列{cn}是等比数列.
(2)∵c1=a1-1=-1 2
,
∴cn=-1 2n
,an=cn+1=1-1 2n
,an-1=1-1 2n−1
.
故当n≥2时,bn=an-an-1=1 2n−1
-1 2n
=1 2n
.
又b1=a1=1 2
,即bn=1 2n
(n∈N*).
(1)设cn=an-1,求证:数列{cn}是等比数列;
(2)求数列{bn}的通项公式.
优质解答
1 |
2 |
又an+1+Sn+1=n+1,两式相减得2(an+1-1)=an-1,即
an+1−1 |
an−1 |
1 |
2 |
也即
cn+1 |
cn |
1 |
2 |
(2)∵c1=a1-1=-
1 |
2 |
∴cn=-
1 |
2n |
1 |
2n |
1 |
2n−1 |
故当n≥2时,bn=an-an-1=
1 |
2n−1 |
1 |
2n |
1 |
2n |
又b1=a1=
1 |
2 |
1 |
2n |
本题链接: