首页 > 数学 > 题目详情
概率论中二维随机变量求边缘密度的两种方法的问题……看这个题目:二维随机变量的联合分布函数满足:F(x,y)=1- e^(
题目内容:
概率论中二维随机变量求边缘密度的两种方法的问题……
看这个题目:
二维随机变量的联合分布函数满足:
F(x,y)=1- e^(-x)-e^(-y) x,y>0
0 其他
求x的边缘概率密度.
我有两种方法:两种方法做的结果不一致……
1.x的边缘分布函数是F(x,+无穷)=1-e^(-x)
那么x的边缘概率密度是上式对于x求导即f(x)=e^(-x)
2.先求二维随机变量的联合分布密度:
f(x,y)等于F(x,y)的混合偏导,f(x,y)=0,最后竟然做的f(x)=0,
求高手指教,那个地方有问题,错在何处?优质解答
你的分布函数不对,F(x,y)=1- e^(-x)-e^(-y) 在(0,0)点为-1.
看这个题目:
二维随机变量的联合分布函数满足:
F(x,y)=1- e^(-x)-e^(-y) x,y>0
0 其他
求x的边缘概率密度.
我有两种方法:两种方法做的结果不一致……
1.x的边缘分布函数是F(x,+无穷)=1-e^(-x)
那么x的边缘概率密度是上式对于x求导即f(x)=e^(-x)
2.先求二维随机变量的联合分布密度:
f(x,y)等于F(x,y)的混合偏导,f(x,y)=0,最后竟然做的f(x)=0,
求高手指教,那个地方有问题,错在何处?
优质解答
本题链接: