【已知:如图,在▱ABCD中,点G、H分别是AB、CD的中点,点E、F在AC上,且AE=CF.试说明四边形EGFH是平行四边形.】
2020-11-04 217次 反馈错误 加入收藏 正确率 : 100%
题目内容:
已知:如图,在▱ABCD中,点G、H分别是AB、CD的中点,点E、F在AC上,且AE=CF.试说明四边形EGFH是平行四边形.
优质解答
证明:连接BD与AC交于点O,
∵点G、H分别是AB、CD的中点,
∴连接HG,则HG必过点O,
在△ACD中OH∥AD且OH=AD,
同理OG=AD,
∴OH=OG,
在平行四边形ABCD中,
则OA=OC,
又AE=CF,
∴OE=OF,
∴四边形EGFH为平行四边形.
本题链接: