高一空间几何证明题在四棱锥P-ABCD中,底面ABCD是一直角梯形,角BAD=90度,AD平行于BC,AB=BC=a,A
2021-04-12 119次 反馈错误 加入收藏 正确率 : 100%
题目内容:
高一空间几何证明题
在四棱锥P-ABCD中,底面ABCD是一直角梯形,角BAD=90度,AD平行于BC,AB=BC=a,AD=2a,且PA垂直于底面,PD与底面成30度角,若AE垂直于PD,E为垂足,求证BE垂直于PD
优质解答
PA垂直于底面ABCD,AD为PD 在面ABCD的射影,BA垂直于AD,所以AB垂直于PD,又AE垂直于PD,E为垂足,AE交AB于A ,PD垂直于平面ABE,BE在平面ABE上,所以BE垂直于PD
本题链接: