首页 > 数学 > 题目详情
如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P
题目内容:
如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P是OB上的一动点,试求PD+PA和的最小值是( )
A. 210
B. 10
C. 4
D. 6优质解答
连接CD,交OB于P.则CD就是PD+PA和的最小值.
∵在直角△OCD中,∠COD=90°,OD=2,OC=6,
∴CD=22+62
=210
,
∴PD+PA=PD+PC=CD=210
.
∴PD+PA和的最小值是210
.
故选A.
A. 2
10 |
B.
10 |
C. 4
D. 6
优质解答
∵在直角△OCD中,∠COD=90°,OD=2,OC=6,
∴CD=
22+62 |
10 |
∴PD+PA=PD+PC=CD=2
10 |
∴PD+PA和的最小值是2
10 |
故选A.
本题链接: