首页 > 数学 > 题目详情
【如图,等腰△ABC的顶角为50°,AB=AC,以AB为直径作半圆交BC于点D,交AC于点E,求BD、DE和AE所对圆心角的度数.】
题目内容:
如图,等腰△ABC的顶角为50°,AB=AC,以AB为直径作半圆交BC于点D,交AC于点E,求BD
、DE
和AE
所对圆心角的度数.
优质解答
连接BE、AD,
∵AB是圆的直径,
∴∠ADB=∠AEB=90°,
∴∠ABE=90°-50°=40°,
AD⊥BC,
∵AB=AC,∠BAC=50°,
∴∠BAD=∠DAC=1 2
∠BAC=25°,
∴由圆周角定理得:弧BD所对的圆心角的度数是2∠DAB=50°,弧DE所对的圆心角的度数是2∠DAE=50°,弧AE所对的圆心角的度数是2∠BAE=80°.
BD |
DE |
AE |
优质解答
连接BE、AD,
∵AB是圆的直径,
∴∠ADB=∠AEB=90°,
∴∠ABE=90°-50°=40°,
AD⊥BC,
∵AB=AC,∠BAC=50°,
∴∠BAD=∠DAC=
1 |
2 |
∴由圆周角定理得:弧BD所对的圆心角的度数是2∠DAB=50°,弧DE所对的圆心角的度数是2∠DAE=50°,弧AE所对的圆心角的度数是2∠BAE=80°.
本题链接: