首页 > 数学 > 题目详情
如图1,AO⊥OB,OC在∠AOB的内部,OD、OE分别是∠AOC和∠BOC的角平分线.(1)当∠BOC=60°时,求∠
题目内容:
如图1,AO⊥OB,OC在∠AOB的内部,OD、OE分别是∠AOC和∠BOC的角平分线.
(1)当∠BOC=60°时,求∠DOE的度数;
(2)如图2,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否会发生变化?若变化,说明理由;若不变,求∠DOE的度数.优质解答
(1)∵AO⊥OB,
∴∠AOB=90°
又∵∠BOC=60°
∴∠AOC=∠AOB-∠BOC=90°-60°=30°
又∵OD、OE分别平分∠AOC和∠BOC,
∴∠COE=1 2
∠BOC=30°,∠DOC=1 2
∠AOC=15°,
∴∠DOE=∠COD+∠COE=30°+15°=45°;
(2)∠DOE的大小不变,等于45°.
理由如下:
∵AO⊥OB,
∴∠AOB=90°
∵OD、OE分别平分∠AOC和∠BOC.
∴∠COE=1 2
∠BOC,∠DOC=1 2
∠AOC,
∴∠DOE=∠COE+∠COD=1 2
(∠BOC+∠AOC),
=1 2
∠AOB=1 2
×90°=45°.
(1)当∠BOC=60°时,求∠DOE的度数;
(2)如图2,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否会发生变化?若变化,说明理由;若不变,求∠DOE的度数.
优质解答
∴∠AOB=90°
又∵∠BOC=60°
∴∠AOC=∠AOB-∠BOC=90°-60°=30°
又∵OD、OE分别平分∠AOC和∠BOC,
∴∠COE=
1 |
2 |
1 |
2 |
∴∠DOE=∠COD+∠COE=30°+15°=45°;
(2)∠DOE的大小不变,等于45°.
理由如下:
∵AO⊥OB,
∴∠AOB=90°
∵OD、OE分别平分∠AOC和∠BOC.
∴∠COE=
1 |
2 |
1 |
2 |
∴∠DOE=∠COE+∠COD=
1 |
2 |
=
1 |
2 |
1 |
2 |
本题链接: