首页 > 数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCd是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于
题目内容:
如图,在四棱锥P-ABCD中,底面ABCd是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.
(1)若G为AD的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)求二面角A-BC-P的大小.优质解答
(1)证明:∵△ABD为等边三角形且G为AD的中点,
∴BG⊥AD
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴BG⊥平面PAD
(2)证明:∵△PAD是等边三角形且G为AD的中点,
∴AD⊥PG
∵AD⊥BG,PG∩BG=G,
∴AD⊥平面PBG,PB⊂平面PBG,
∴AD⊥PB;
(3)∵AD⊥PB,AD∥BC,∴BC⊥PB,
∵BG⊥AD,AD∥BC,
∴BG⊥BC,
∴∠PBG是二面角A-BC-P的平面角,
在直角△PBG中,PG=BG,∴∠PBG=45°,
∴二面角A-BC-P的平面角是45°.
(1)若G为AD的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)求二面角A-BC-P的大小.
优质解答
∴BG⊥AD
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴BG⊥平面PAD
(2)证明:∵△PAD是等边三角形且G为AD的中点,
∴AD⊥PG
∵AD⊥BG,PG∩BG=G,
∴AD⊥平面PBG,PB⊂平面PBG,
∴AD⊥PB;
(3)∵AD⊥PB,AD∥BC,∴BC⊥PB,
∵BG⊥AD,AD∥BC,
∴BG⊥BC,
∴∠PBG是二面角A-BC-P的平面角,
在直角△PBG中,PG=BG,∴∠PBG=45°,
∴二面角A-BC-P的平面角是45°.
本题链接: