首页 > 数学 > 题目详情
已知菱形的面积为8根号3cm的平方,且两条对角线的长之比为1:根号3,求菱形的边长和周长平行四边形ABCD的对角线AC的
题目内容:
已知菱形的面积为8根号3cm的平方,且两条对角线的长之比为1:根号3,求菱形的边长和周长
平行四边形ABCD的对角线AC的垂直平分线与直线AD,BC分别交与E,F,求证:四边形AECF的菱形
化简(X+Y-4XY/X+Y)*(X-Y-4XY/X-Y)优质解答
解析:∵菱形的两条对角线互相垂直,
∴S菱形=AC*BD/2=8√3,
且AC/BD=1:√3,或AC/BD=√3:1
解得AC=4,BD=4√3,或BD=4,AC=4√3
边长=√[(AC/2)^2+(BD/2)^2]=4
周长=4*4=16
证明:∵EF是AC的垂直平分线,
∴EA=EC,FA=FC,
易得∠AEF=∠CEF,
∵AD‖BC,∴∠AEF=∠EFC,
∴∠CFE=∠CEF
∴CE=CF
则AE=EC=CF=FA,
∴四边形AECF是菱形
平行四边形ABCD的对角线AC的垂直平分线与直线AD,BC分别交与E,F,求证:四边形AECF的菱形
化简(X+Y-4XY/X+Y)*(X-Y-4XY/X-Y)
优质解答
∴S菱形=AC*BD/2=8√3,
且AC/BD=1:√3,或AC/BD=√3:1
解得AC=4,BD=4√3,或BD=4,AC=4√3
边长=√[(AC/2)^2+(BD/2)^2]=4
周长=4*4=16
证明:∵EF是AC的垂直平分线,
∴EA=EC,FA=FC,
易得∠AEF=∠CEF,
∵AD‖BC,∴∠AEF=∠EFC,
∴∠CFE=∠CEF
∴CE=CF
则AE=EC=CF=FA,
∴四边形AECF是菱形
本题链接: