首页 > 数学 > 题目详情
一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体,问:其中三面都涂色的有多少个?两面都涂色的有多少个?
题目内容:
一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体,问:其中三面都涂色的有多少个?两面都涂色的有多少个?只有一面涂色的多少个?各面都没有涂色的有多少个?
优质解答
根据以上分析:顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有12个;两面涂色;每个面的正中间的一个只有一面涂色的有6个;正方体正中心处的1个小正方体各面都没有涂色.
故:三面涂色的小正方体有8个;
两面涂色的小正方体有12个;
只有一面涂色的有6个;
各面都没有涂色的有1个.
优质解答
故:三面涂色的小正方体有8个;
两面涂色的小正方体有12个;
只有一面涂色的有6个;
各面都没有涂色的有1个.
本题链接: