首页 > 数学 > 题目详情
已知三角形ABC的三个内角A,B,C成等差数列,其外接圆半径为1,且有……sinA-sinC+二分之根号二倍cos(A-
题目内容:
已知三角形ABC的三个内角A,B,C成等差数列,其外接圆半径为1,且有……
sinA-sinC+二分之根号二倍cos(A-C)=二分之根号二 .1 求 A的大小.2 求三角形面积.(第二问不必回答,只要第一问的解答,最好给出两种或更多解法!)优质解答
A,B,C成等差数列
所以2B=A+C
又A+B+C=180°
易求得A+C=120°
sinA-sinC+(√2/2)cos(A-C)=√2/2
2sin[(A-C)/2]cos[(A+C)/2]+(√2/2)cos(A-C)=√2/2
2sin[(A-C)/2]cos60°+(√2/2)[1-2sin²((A-C)/2)]=√2/2
sin[(A-C)/2]+(√2/2)-√2sin²[(A-C)/2]=√2/2
sin[(A-C)/2]-√2sin²[(A-C)/2]=0
sin[(A-C)/2]{1-√2sin[(A-C)/2]}=0
sin[(A-C)/2]=0 或者 sin[(A-C)/2]=√2/2
(A-C)/2=0 或者 (A-C)/2=45°
A=C 或者 A-C=90°
因为A+C=120°,求得
A=60°,C=60° 或者 A=105°,C=15°
sinA-sinC+二分之根号二倍cos(A-C)=二分之根号二 .1 求 A的大小.2 求三角形面积.(第二问不必回答,只要第一问的解答,最好给出两种或更多解法!)
优质解答
所以2B=A+C
又A+B+C=180°
易求得A+C=120°
sinA-sinC+(√2/2)cos(A-C)=√2/2
2sin[(A-C)/2]cos[(A+C)/2]+(√2/2)cos(A-C)=√2/2
2sin[(A-C)/2]cos60°+(√2/2)[1-2sin²((A-C)/2)]=√2/2
sin[(A-C)/2]+(√2/2)-√2sin²[(A-C)/2]=√2/2
sin[(A-C)/2]-√2sin²[(A-C)/2]=0
sin[(A-C)/2]{1-√2sin[(A-C)/2]}=0
sin[(A-C)/2]=0 或者 sin[(A-C)/2]=√2/2
(A-C)/2=0 或者 (A-C)/2=45°
A=C 或者 A-C=90°
因为A+C=120°,求得
A=60°,C=60° 或者 A=105°,C=15°
本题链接: