首页 > 数学 > 题目详情
【已知圆C:(X-1)^2+(Y-2)²=2,P点为(2,-1),过P点作圆C的切线,切点为A,B.求PA,PB方程求切线PA的长角APB的正弦值AB的直线方程】
题目内容:
已知圆C:(X-1)^2+(Y-2)²=2,P点为(2,-1),过P点作圆C的切线,切点为A,B.
求PA,PB方程 求切线PA的长 角APB的正弦值 AB的直线方程优质解答
(1)过P点的圆的切线为
y+1=k(x-2)
--->kx-y-2k-1=0
它与圆心(1,2)的距离等于半径 "根2",故
|k-2-2k-1|/根(1+k^2)=根2
--->k^2-6k-7=0
解得,k=7,或k=-1.
故PA、PB分别为
x+y-1=0
7x-y-15=0
(2)在直角三角形PAC中,由两点距公式易得,|PC|=根10
故|PA|^2=|PB|^2=|PC|^2-|AC|^2=10-2=8
即过P点的圆的切线长是:2根2.
(3){x+y-1=0,(x-1)^2+(y-2)^2=2}
--->x=0,y=1
即切点A(0,1);
{7x-y-15=0,(x-1)^2+(y-2)^2=2}
--->x=12/5,y=9/5.
故由两点式可得直线AB的方程为:
x-3y+3=0.
求PA,PB方程 求切线PA的长 角APB的正弦值 AB的直线方程
优质解答
y+1=k(x-2)
--->kx-y-2k-1=0
它与圆心(1,2)的距离等于半径 "根2",故
|k-2-2k-1|/根(1+k^2)=根2
--->k^2-6k-7=0
解得,k=7,或k=-1.
故PA、PB分别为
x+y-1=0
7x-y-15=0
(2)在直角三角形PAC中,由两点距公式易得,|PC|=根10
故|PA|^2=|PB|^2=|PC|^2-|AC|^2=10-2=8
即过P点的圆的切线长是:2根2.
(3){x+y-1=0,(x-1)^2+(y-2)^2=2}
--->x=0,y=1
即切点A(0,1);
{7x-y-15=0,(x-1)^2+(y-2)^2=2}
--->x=12/5,y=9/5.
故由两点式可得直线AB的方程为:
x-3y+3=0.
本题链接: