首页 > 数学 > 题目详情
已知x1,x2是关于x的一元二次方程x2-6x+k=0的两个实数根,且x12x22-x1-x2=115.(1)求k的值;(2)求x12+x22+8的值.
题目内容:
已知x1,x2是关于x的一元二次方程x2-6x+k=0的两个实数根,且x12x22-x1-x2=115.
(1)求k的值;
(2)求x12+x22+8的值.优质解答
(1)∵x1,x2是方程x2-6x+k=0的两个根,
∴x1+x2=6,x1x2=k,
∵x12x22-x1-x2=115,
∴k2-6=115,
解得k1=11,k2=-11,
当k1=11时,△=36-4k=36-44<0,
∴k1=11不合题意
当k2=-11时,△=36-4k=36+44>0,
∴k2=-11符合题意,
∴k的值为-11;
(2)∵x1+x2=6,x1x2=-11
∴x12+x22+8=(x1+x2)2-2x1x2+8=36+2×11+8=66.
(1)求k的值;
(2)求x12+x22+8的值.
优质解答
∴x1+x2=6,x1x2=k,
∵x12x22-x1-x2=115,
∴k2-6=115,
解得k1=11,k2=-11,
当k1=11时,△=36-4k=36-44<0,
∴k1=11不合题意
当k2=-11时,△=36-4k=36+44>0,
∴k2=-11符合题意,
∴k的值为-11;
(2)∵x1+x2=6,x1x2=-11
∴x12+x22+8=(x1+x2)2-2x1x2+8=36+2×11+8=66.
本题链接: