首页 > 数学 > 题目详情
【如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=3,BC=2.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的余弦值.】
题目内容:
如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=3
,BC=2.
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.优质解答
(1)证明:由直棱柱的性质可得,AA1⊥平面ABC∴AA1⊥AB∵在△ABC中AB=1,AC=3,BC=2,AB2+AC2=BC2∴AB⊥AC又AC∩AA1=A∴AB⊥平面ACC1A1,又∵A1C⊂平面ACC1A1∴AB⊥A1C(2)连接A1C,A1B由已知可得A1B=BC=2 ...
3 |
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.
优质解答
本题链接: