首页 > 数学 > 题目详情
【已知向量a=(2根号3sinx,cosx+sinx),b=(cosx,cosx-sinx),函数f(x)=a·b,求f((2)求f(x)的单调增区间,(3)若x属于【0,pai/2],求函数f(x)
题目内容:
已知向量a=(2根号3sinx,cosx+sinx),b=(cosx,cosx-sinx),函数f(x)=a·b,求f(
(2)求f(x)的单调增区间,(3)若x属于【0,pai/2],求函数f(x)的值域优质解答
解
a=(2√3sinx,cosx+sinx),b=(cosx,cosx-sinx)
f(x)=a·b=2√3sinxcosx+cos^2x-sin^2x
=√3sin2x+cos2x
=2sin(2x+π/6)
令2kπ-π/2 - 追问:
- 求f(x)的解析式及周期
- 追答:
- f(x)=a·b =2√3sinxcosx+cos^2x-sin^2x =√3sin2x+cos2x =2sin(2x+π/6) 周期T=2π/2=π
(2)求f(x)的单调增区间,(3)若x属于【0,pai/2],求函数f(x)的值域
优质解答
a=(2√3sinx,cosx+sinx),b=(cosx,cosx-sinx)
f(x)=a·b=2√3sinxcosx+cos^2x-sin^2x
=√3sin2x+cos2x
=2sin(2x+π/6)
令2kπ-π/2
- 追问:
- 求f(x)的解析式及周期
- 追答:
- f(x)=a·b =2√3sinxcosx+cos^2x-sin^2x =√3sin2x+cos2x =2sin(2x+π/6) 周期T=2π/2=π
本题链接: