首页 > 数学 > 题目详情
函数f(x)的定义域为R,f(-1)=2,对任意x属于R,f(x)的导数>2,则f(x)>2x+4的解集为
题目内容:
函数f(x)的定义域为R,f(-1)=2,对任意x属于R,f(x)的导数>2,则f(x)>2x+4的解集为优质解答
令F(x)=f(x)-2x44
求导,F'(x)=f'(x)-2
因为对任意x属于R,f(x)的导数=f'(x)>2,所以F'(x)>0
则F(x)函数为单调递增函数
当x=-1时,F(x)=f(-1)+2-4=0
则f(x)>2x+4的解集为x>-1 - 追问:
- 最后一步怎么得的?看不懂
- 追答:
- 若要满足f(x)>2x+4,即F(x)=f(x)-(2x+4)>0 因为F(x)单调递增,F(-1)=0 则当x>-1时,F(x)>F(-1)=0;当x
优质解答
求导,F'(x)=f'(x)-2
因为对任意x属于R,f(x)的导数=f'(x)>2,所以F'(x)>0
则F(x)函数为单调递增函数
当x=-1时,F(x)=f(-1)+2-4=0
则f(x)>2x+4的解集为x>-1
- 追问:
- 最后一步怎么得的?看不懂
- 追答:
- 若要满足f(x)>2x+4,即F(x)=f(x)-(2x+4)>0 因为F(x)单调递增,F(-1)=0 则当x>-1时,F(x)>F(-1)=0;当x
本题链接: