数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*).(Ⅰ)求数列{an}的通项an;(Ⅱ)求数列{nan}的前n项和Tn.
2020-10-26 164次 反馈错误 加入收藏 正确率 : 100%
题目内容:
数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求数列{an}的通项an;
(Ⅱ)求数列{nan}的前n项和Tn.
优质解答
(I)∵an+1=2Sn,
∴Sn+1-Sn=2Sn,
∴=3.
又∵S1=a1=1,
∴数列{Sn}是首项为1、公比为3的等比数列,Sn=3n-1(n∈N*).
∴当n≥2时,an-2Sn-1=2•3n-2(n≥2),
∴an=
(II)Tn=a1+2a2+3a3+…+nan,
当n=1时,T1=1;
当n≥2时,Tn=1+4•30+6•31+…+2n•3n-2,①3Tn=3+4•31+6•32+…+2n•3n-1,②
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1=2+2•−2n•3n−1=-1+(1-2n)•3n-1
∴Tn=+(n-)3n-1(n≥2).
又∵Tn=a1=1也满足上式,∴Tn=+(n-)3n-1(n∈N*)
本题链接: