首页 > 数学 > 题目详情
泰勒公式求极限.x->∞时 (x^3 +3*x^2)^1/3 -(x^4-2*x^3)^1/4 的极限请说下怎么用泰勒公
题目内容:
泰勒公式求极限.
x->∞时 (x^3 +3*x^2)^1/3 -(x^4-2*x^3)^1/4 的极限
请说下怎么用泰勒公式求这个式子的极限,特别的想问一下,求导以后,导数的分母部分不能带入0,迈克劳林公式就没法套用,这样的情况一般该如何解决?还有这种类型的求导有没有什么套路可以简化下计算过程的.优质解答
∵(1+x)^α=1+αx+α(α-1)(x²/2)+o(x²) (泰勒公式,o(x)是高阶无穷小)∴(x³+3x²)^(1/3)=x(1+3/x)^(1/3)=x[1+(1/3)(3/x)+(1/3)(1/3-1)((3/x)²/2)+o(1/x²)] (应用上式泰勒公式展开)=x[1...
x->∞时 (x^3 +3*x^2)^1/3 -(x^4-2*x^3)^1/4 的极限
请说下怎么用泰勒公式求这个式子的极限,特别的想问一下,求导以后,导数的分母部分不能带入0,迈克劳林公式就没法套用,这样的情况一般该如何解决?还有这种类型的求导有没有什么套路可以简化下计算过程的.
优质解答
本题链接: