首页 > 数学 > 题目详情
如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发沿AD,BC,CB,DA方向在矩形的边上同
题目内容:
如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;
(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形;
(3)以P、Q、M、N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.优质解答
(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.
①当点P与点N重合时,由x2+2x=20,得x1=21
-1,x2=-21
-1(舍去).
因为BQ+CM=x+3x=4(21
-1)<20,此时点Q与点M不重合.
所以x=21
-1符合题意.
②当点Q与点M重合时,由x+3x=20,得x=5.
此时DN=x2=25>20,不符合题意.
故点Q与点M不能重合.
所以所求x的值为21
-1.
(2)由(1)知,点Q只能在点M的左侧,
①当点P在点N的左侧时,
由20-(x+3x)=20-(2x+x2),
解得x1=0(舍去),x2=2.
当x=2时四边形PQMN是平行四边形.
②当点P在点N的右侧时,
由20-(x+3x)=(2x+x2)-20,
解得x1=-10(舍去),x2=4.
当x=4时四边形NQMP是平行四边形.
所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.
(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.
由于2x>x,
所以点E一定在点P的左侧.
若以P,Q,M,N为顶点的四边形是等腰梯形,
则点F一定在点N的右侧,且PE=NF,
即2x-x=x2-3x.
解得x1=0(舍去),x2=4.
由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,
所以以P,Q,M,N为顶点的四边形不能为等腰梯形.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;
(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形;
(3)以P、Q、M、N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.
优质解答
①当点P与点N重合时,由x2+2x=20,得x1=
21 |
21 |
因为BQ+CM=x+3x=4(
21 |
所以x=
21 |
②当点Q与点M重合时,由x+3x=20,得x=5.
此时DN=x2=25>20,不符合题意.
故点Q与点M不能重合.
所以所求x的值为
21 |
(2)由(1)知,点Q只能在点M的左侧,
①当点P在点N的左侧时,
由20-(x+3x)=20-(2x+x2),
解得x1=0(舍去),x2=2.
当x=2时四边形PQMN是平行四边形.
②当点P在点N的右侧时,
由20-(x+3x)=(2x+x2)-20,
解得x1=-10(舍去),x2=4.
当x=4时四边形NQMP是平行四边形.
所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.
(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.
由于2x>x,
所以点E一定在点P的左侧.
若以P,Q,M,N为顶点的四边形是等腰梯形,
则点F一定在点N的右侧,且PE=NF,
即2x-x=x2-3x.
解得x1=0(舍去),x2=4.
由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,
所以以P,Q,M,N为顶点的四边形不能为等腰梯形.
本题链接: