首页 > 数学 > 题目详情
sin(kπ-α)*cos〔(k-1)π-α〕/sin〔(k+1)π+α〕*cos(kπ+α),k属于Z
题目内容:
sin(kπ-α)*cos〔(k-1)π-α〕/sin〔(k+1)π+α〕*cos(kπ+α) ,k属于Z优质解答
当k为偶数时
sin(kπ-α)*cos〔(k-1)π-α〕/[sin〔(k+1)π+α〕*cos(kπ+α) ]
=-sina*(-cosa)/[-sina*cosa]
=-1
当k为奇数时
sin(kπ-α)*cos〔(k-1)π-α〕/[sin〔(k+1)π+α〕*cos(kπ+α) ]
=sina*(cosa)/[sina*-cosa]
=-1
综上所述,sin(kπ-α)*cos〔(k-1)π-α〕/[sin〔(k+1)π+α〕*cos(kπ+α) ]=-1
优质解答
sin(kπ-α)*cos〔(k-1)π-α〕/[sin〔(k+1)π+α〕*cos(kπ+α) ]
=-sina*(-cosa)/[-sina*cosa]
=-1
当k为奇数时
sin(kπ-α)*cos〔(k-1)π-α〕/[sin〔(k+1)π+α〕*cos(kπ+α) ]
=sina*(cosa)/[sina*-cosa]
=-1
综上所述,sin(kπ-α)*cos〔(k-1)π-α〕/[sin〔(k+1)π+α〕*cos(kπ+α) ]=-1
本题链接: