首页 > 数学 > 题目详情
二重积分和三重积分的区别.分别用定积分,二重积分和三重积分三种方法计算旋转抛物面Z=x^2+y^2和平面Z=a^2所围成
题目内容:
二重积分和三重积分的区别.
分别用定积分,二重积分和三重积分三种方法计算旋转抛物面Z=x^2+y^2和平面Z=a^2所围成的空间区域Ω的体积.
搞不懂三重积分和二重积分投影下来的时候都是圆、为什么三重积分多个变量Z呢?我快疯了.就剩这点分了.麻烦帮下忙谢谢优质解答
都是递进关系,从一重积分开始,只说几何意义吧.一重积分(定积分):只有一个自变量y = f(x)当被积函数为1时,就是直线的长度(自由度较大)∫(a→b) dx = L(直线长度)被积函数不为1时,就是图形...
分别用定积分,二重积分和三重积分三种方法计算旋转抛物面Z=x^2+y^2和平面Z=a^2所围成的空间区域Ω的体积.
搞不懂三重积分和二重积分投影下来的时候都是圆、为什么三重积分多个变量Z呢?我快疯了.就剩这点分了.麻烦帮下忙谢谢
优质解答
本题链接: