首页 > 中学数学试题 > 题目详情
已知点A(―1,0),B(1,0)及抛物线y^2=2x ,若抛物线上点P满足向量|PA|=m|PB|,则m的最大值为64
题目内容:
已知点A(―1,0),B(1,0)及抛物线y^2=2x ,若抛物线上点P满足向量|PA|=m|PB|,则m的最大值为
64-4(1-m^2)(4-4m^2)≥0
(m^2-3)(m^2+1)≤0
这两步之间不太明白..
设P点(y^2/2,y)
|PA|^2=(y^2/2+1)^2+y^2
|PB|^2=(y^2/2-1)^2+y^2
|PA|^2=m^2|PB|^2 (m≥0)
(y^2/2+1)^2+y^2=m^2(y^2/2-1)^2+m^2y^2
(1-m^2)y^4+8y^2+4-4m^2=0
设y^2=p≥0
(1-m^2)p^2+8p+4-4m^2=0
则△≥0
64-4(1-m^2)(4-4m^2)≥0
(m^2-3)(m^2+1)≤0
m∈[-√3,√3]
由p≥0
p1+p2≥0,p1*p2≥0
得8/(m^2-1)≥0
m∈(-∞,-1]∪[1,+∞)
4m^2/(m^2-1)≥0
m∈(-∞,-1]∪[1,+∞)
交集为m∈[-√3,-1]∪[1,√3]
最大值为√3
已知点A(―1,0),B(1,0)及抛物线y^2=2x ,若抛物线上点P满足向量|PA|=m|PB|,则m的最大值为
64-4(1-m^2)(4-4m^2)≥0
(m^2-3)(m^2+1)≤0
这两步之间不太明白..
设P点(y^2/2,y)
|PA|^2=(y^2/2+1)^2+y^2
|PB|^2=(y^2/2-1)^2+y^2
|PA|^2=m^2|PB|^2 (m≥0)
(y^2/2+1)^2+y^2=m^2(y^2/2-1)^2+m^2y^2
(1-m^2)y^4+8y^2+4-4m^2=0
设y^2=p≥0
(1-m^2)p^2+8p+4-4m^2=0
则△≥0
64-4(1-m^2)(4-4m^2)≥0
(m^2-3)(m^2+1)≤0
m∈[-√3,√3]
由p≥0
p1+p2≥0,p1*p2≥0
得8/(m^2-1)≥0
m∈(-∞,-1]∪[1,+∞)
4m^2/(m^2-1)≥0
m∈(-∞,-1]∪[1,+∞)
交集为m∈[-√3,-1]∪[1,√3]
最大值为√3
64-4(1-m^2)(4-4m^2)≥0
(m^2-3)(m^2+1)≤0
这两步之间不太明白..
设P点(y^2/2,y)
|PA|^2=(y^2/2+1)^2+y^2
|PB|^2=(y^2/2-1)^2+y^2
|PA|^2=m^2|PB|^2 (m≥0)
(y^2/2+1)^2+y^2=m^2(y^2/2-1)^2+m^2y^2
(1-m^2)y^4+8y^2+4-4m^2=0
设y^2=p≥0
(1-m^2)p^2+8p+4-4m^2=0
则△≥0
64-4(1-m^2)(4-4m^2)≥0
(m^2-3)(m^2+1)≤0
m∈[-√3,√3]
由p≥0
p1+p2≥0,p1*p2≥0
得8/(m^2-1)≥0
m∈(-∞,-1]∪[1,+∞)
4m^2/(m^2-1)≥0
m∈(-∞,-1]∪[1,+∞)
交集为m∈[-√3,-1]∪[1,√3]
最大值为√3
本题链接: